Paper Award

WITec PaperAward - Contribute your scientific results

The WITec Paper Award recognizes exceptional scientific publications in a peer-reviewed scientific journal and must include results and/or images acquired with a WITec microscope system. Scientists from all over the world are encouraged to submit their papers published (print or online) in the current year.

The use of a WITec microscope system should be clearly documented either in the "Materials and Methods" section of the article or by other supporting documentation.

Each submitted paper is valid for one giveaway and any author of a paper can submit it.

A WITec jury will judge the submitted papers in terms of scientific relevance, data quality and the level of instrument feature utilization.

Once a year, a jury will appoint the winner of this annual award.

Entry deadline is January 31st of each year.

How to contribute:

  1. Send your paper (as PDF-file) to and include your full contact information.
  2. Receive a free WITec gift for each new paper submitted
  3. Automatically participate in the WITec Paper Award competition. The first authors of the three best papers will receive an Amazon gift card.


Previous Awards

2019: Publications can be submitted!


  • Hesham K. Yosef, Sascha D. Krauß, Tatjana Lechtonen, Hendrik Jütte, Andrea Tannapfel, Heiko U. Käfferlein Thomas Brüning, Florian Roghmann, Joachim Noldus, Axel Mosig, Samir F. El-Mashtoly and Klaus Gerwert: Noninvasive diagnosis of high-grade urothelial carcinoma in urine by Raman spectral imaging. Analytical Chemistry 89, 6893 (2017), DOI 10.1021/acs.analchem.7b01403.
  • Marvin Gernhardt, Ling Peng, Matthias Burgard, Shaohua Jiang, Beate Förster, Holger Schmalz and Seema Agarwal: Tailoring the morphology of responsive bioinspired bicomponent fibers. Macromolecular Materials and Engineering 303, 1700248 (2017), DOI. 10.1002/mame.201700248.
  • Guanglin Yu, Yan Rou Yap, Kathryn Pollock and Allison Hubel: Characterization intracellular ice formation of lymphoblasts using low-temperature Raman spectroscopy. Biophysical Journal 112, 2653 (2017), DOI 10.1016/j.bpj.2017.05.009.



  • Maria O’Brien, Niall McEvoy, Damien Hanlon, Toby Hallam, Jonathan N. Coleman, Georg S. Düsberg: Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: layer number, stacking orientation and resonant effects. Scientific Reports (2016); 6, 19476.
  • Sara Fateixa, Manon Wilhelm, Helena I.S. Nogueira, Tito Trindade: SERS and Raman imaging as a new tool to monitor dyeing on textile fibres. Journal of Raman Spectroscopy (2016); 47, 1239.
  • Jonas Higl, M. Köhler, M. Lindén: Confocal Raman microscopy as a non-destructive tool to study microstructure of hydrating cementitious materials. Cement and Concrete Research (2016); 88, 136.



 Admir Masic and James Weaver: Large area sub-micron chemical imaging of magnesium in sea urchin teeth. J. Struct. Biol. (2015); 189, 269.

  • Fernando Rubio-Marcos, Adolfo Del Campo, Pascal Marchet and Jose F. Fernández: Ferrolectric domain wall motion induced by polarized light. Nature Communications (2015); 6, 6594.
  • Yongjun Lee, Seki park, Hyun Kim, Gang Hee Han, Young Hee Lee and Jeongyong Kim: Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. Nanoscale (2015); 7, 11909


  • Katarzyna M. Marzec, A. Rygula, B.R. Wood, S. Chlopicki, M. Baranska. High-resolution Raman imaging reveals spatial location of heme oxidation sites in single red blood cells of dried smears. J. Raman Spectrosc. (2015); 46, 76-83. (doi: 10.1002/jrs.4600).
  • Martin J. Süess, R. A. Minamisawa, R. Geiger, K.K. Bourdelle, H. Sigg, R. Spolenak. Power-dependent Raman analysis of highly strained Si nanobridges. Nano Lett. (2014) ;14, 1249-54. (doi: 10.1021/nl404152r).
  • Chunxiao Cong and Ting Yu. Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers. Nat Commun. (2014; 5, 4709. (doi: 10.1038/ncomms5709).


  • Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720-723 (2013); 8 (10.1126/science.1243879).
  • F. Foucher, F. Westall, Raman imaging of metastable opal in carbonaceous microfossils of the 700-800 ma old Draken Formation. Astrobiology 13, 57-67 (2013); (10.1089/ast.2012.0889).
  • B. Kann, M. Windbergs, Chemical imaging of drug delivery systems with structured surfaces-a combined analytical approach of confocal Raman microscopy and optical profilometry. The AAPS Journal 15, 505-510 (2013); (10.1208/s12248-013-9457-7).


  • Costantini, D., Greusard, L., Bousseksou, A., Rungsawang, R., Zhang, T. P., Callard, S., Decobert, J., Lelarge, F., Duan, G.-H., De Wilde, Y., & Colombelli, R., (2012). In situ generation of surface plasmon polaritons using a near-infrared laser diode. Nano Letters, 12(9), 4693–7. doi:10.1021/nl302040e
  • Matthaeus, C., Krafft, C., Dietzek, B., Brehm, B. R., Lorkowski, S., & Popp, J. (2012). Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling. Analytical Chemistry, 84(20), 8549–56. doi:10.1021/ac3012347
  • Rubio-Marcos, F., Del Campo, A., López-Juárez, R., Romero, J. J., & Fernández, J. F. (2012). High spatial resolution structure of (K,Na)NbO3 lead-free ferroelectric domains. Journal of Materials Chemistry, 22(1), 9714–9720. doi:10.1039/c2jm30483j


  • Schmidt, D. A., Ohta, T., & Beechem, T. E. (2011). Strain and charge carrier coupling in epitaxial graphene. Physical Review B, 84(23), 235422. doi:10.1103/PhysRevB.84.235422
  • Nehrke, G., & Nouet, J. (2011). Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina). Biogeosciences, 8(12), 3761–3769. doi:10.5194/bg-8-3761-2011
  • Xu, Y. N., Zhan, D., Liu, L., Suo, H., Ni, Z. H., Nguyen, T. T., Zhao, C., & Shen, Z. X., (2011). Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy. ACS nano, 5(1), 147–52. doi:10.1021/nn101920c
  • Weber-Bargioni, A., Schwartzberg, A., Cornaglia, M., Ismach, A., Urban, J. J., Pang, Y., Gordon, R., Bokor, J., Salmeron, M. B., Ogletree, D. F., Ashby, P., Cabrini, S., Schuck, P. J., (2011). Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes. Nano letters, 11, 1201–1207. doi:10.1021/nl104163m


  • Meister, K., Schmidt, D. A., Bründermann, E., & Havenith, M. (2010). Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa. The Analyst, 135(6), 1370–4. doi:10.1039/b927012d
  • dePaula, S. M., Huila, M. F. G., Araki, K., & Toma, H. E. (2010). Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media. Micron, 41(8), 983–9. doi:10.1016/j.micron.2010.06.014
  • Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H., & Fratzl, P. (2010). Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science, 328(5975), 216–20. doi:10.1126/science.1181044